مقایسه عملکرد شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی در پیش‌بینی حجم صنعتی و هیزمی حاصل از درختان

Authors

  • فاطمه گرزین دانش آموخنه پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران
Abstract:

سابقه و هدف: در مدیریت منابع جنگلی، فرآیندهای تصمیم‌گیری مثل عوامل کیفی در معادلات ریاضی وارد نمی‌شوند. درسال‌های اخیر شبکه‌های عصبی، کاربرد فراوانی در منابع جتگلی داشته‌اند. این تحقیق به مقایسه شبکه عصبی پرسپترون چندلایه و شبکه تابع پایه شعاعی در پیش‌بینی حجم صنعتی و هیزمی درختان پرداخته است. بررسی عملکرد شبکه‌های مختلف و یافتن بهترین نوع آن برای دستیابی به نتایج قابل قبول و معتبر از اهداف این مطالعه می‌باشد. مواد و روش‌ها: در این مطالعه، تعداد 367 اصله درخت از درختان نشانه-گذاری شده جنگل آموزشی پژوهشی خیرود انتخاب و متغیرهای قطر برابر سینه، قطر کنده، ارتفاع کنده، ارتفاع کل، طول صنعتی، حداقل قطر میانه گرده‌بینه، وضعیت درخت، نوع گونه و عوامل توپوگرافی مثل شیب، جهت، ارتفاع از سطح دریا به عنوان ورودی شبکه درنظر گرفته شدند. حجم صنعتی و حجم هیزمی درختان پس از تجدید حجم صد در صد مشخص شد و به عنوان خروجی شبکه در نظر گرفنه شد. برای مدلسازی از شبکه‌های عصبی پرسپترون چند لایه و شبکه تابع پایه شعاعی استفاده شد. برای آموزش شبکه پرسپترون چند لایه از تابع تانژانت هیپربولیک و برای شبکه تابع پایه شعاعی، تابع Softmax در لایه مخفی و تابع خطی در لایه خروجی به همراه الگوریتم نزول گرادیان با مومنتم استفاده گردید. برای مدلسازی داده‌ها به سه قسمت آموزش، اعتبارسنجی و تست تقسیم شدند که نسبت هر کدام به ترتیب برابر با 70%، 15% و 15% بود. تعیین تعداد لایه‌ها پنهان و نرون‌های هر لایه نیز با آزمون و خطا صورت گرفت و تا زمان رسیدن مقدار خطا به حداقل ممکن ادامه یافت. یافته‌ها: طبق نتایج مقدار ضریب تبیین برای حجم صنعتی و هیزمی به ترتیب در شبکه پرسپترون چند لایه 94/0، 71/0 مترمکعب و در شبکه تابع پایه شعاعی 88/0، 65/0 مترمکعب می‌باشد. میزانRMSE نیز برای حجم صنعتی و هیزمی به ترتیب در شبکه پرسپترون چند لایه 297/1، 331/0 مترمکعب و در شبکه تابع پایه شعاعی 72/3 ، 397/0 مترمکعب گزارش شد. نتیجه‌گیری: نتایج حاکی از عملکرد بهتر شبکه پرسپترون چند لایه نسبت به شبکه تابع پایه شعاعی برای پیش‌بینی حجم صنعتی و هیزمی می‌باشد و تنها مزیت شبکه تابع پایه شعاعی نسبت به شبکه پرسپترون چند لایه در پیش‌بینی حجم صنعتی و هیزمی، زمان کوتاه‌تر موردنیاز برای آموزش می‌باشد. استفاده از شبکه و مدلی که با داشتن متغیرهای متعدد در میان شبکه‌ها و مدل‌های موجود دارای دقت بالاتری بوده، در اولویت قرار دارد. بنابراین با توجه به نوین و توانا بودن این تکنیک، نیاز به شناسایی گستره‌ای از کاربردهای بالقوه آن در جامعه علوم جنگل به عنوان ابزار جایگزین، احساس می‌شود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی تعداد موارد بروسلوز براساس پارامترهای اقلیمی با استفاده از روش‌های داده کاوی شبکه‌های عصبی مصنوعی پرسپترون چند لایه، تابع پایه شعاعی و نزدیک‌ترین همسایگی

Background and Objectives: Identification of statistical models has a great impact on early and accurate detection of outbreaks of infectious diseases and timely warning in health surveillance. This study evaluated and compared the performance of the three data mining techniques in time series prediction of brucellosis.   Methods: In this time series, the data of the human brucellosis cases a...

full text

تشخیص خودکار مدولاسیون با استفاده از برنامه نویسی ژنتیک و شبکه عصبی چند لایه پرسپترون

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. In this research we implemented our model by using appropria...

full text

مقایسه عملکرد شبکه‌های عصبی پرسپترون چندلایه و توابع با پایه شعاعی در برآورد ستانده انرژی مرغ گوشتی

مدیریت انرژی یکی از اصلی‌ترین راه‌های بهینه‌سازی مصرف منابع انرژی است. پیش‌بینی عملکرد محصولات بر اساس ورودی‌های انرژی می‌تواند به کشاورزان و سیاست‌گذاران به منظور برآورد سطح تولید کمک کند. داده‌های مورد نیاز برای مطالعه به طور تصادفی از 70 مزرعه مرغ‌گوشتی در شمال‌غرب ایران جمع‌آوری گردید. انرژی‌های ورودی شامل نیروی انسانی، ماشین‌آلات، سوخت، خوراک و الکتریسیته و انرژی‌های خروجی تولید شده به عنو...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 24  issue 4

pages  187- 198

publication date 2018-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023